پایان نامه بررسی تأثير آموزش چرتکه بر یادگیری علم رياضی دانش آموزان


در حال بارگذاری
2 دی 1397
Word
5 مگابایت
140 صفحه
۴۰,۰۰۰ تومان ۲۸,۰۰۰ تومان
خرید

بررسی تأثير آموزش چرتکه بر یادگیری علم رياضی دانش آموزان پايه اول

مقدمه

در این پژوهش تلاش بر این است تا تأثیر آموزش چرتکه در جهت یادگیری و پیشرفت علم ریاضی دانش آموزان بررسی کنیم. مطالعه این مقاله برای معلّمان و دست اندرکاران برنامه ریزی آموزشی و والدین دانش آموزان اهمیّت زیادی دارد، زیرا که از جمله مشکلات رایج دانش آموزان و معلمان در درس ریاضی عدم سهولت در فراگیری آن و فراموشی سریع مطالب یادگرفته شده می‌باشد. در این رابطه باید هدف اصلی معلمین از آموزش ریاضی به کودکان، شکوفایی استعداد آنها از درک روابط و باروری تفکّرصحیح وکاربرد این علم در آنها باشد. برای انجام این مهمو بتوانیمدر این راستا به کودکان کمک کنیمو استعدادی را که خداوند به آنها هدیه داده است رشد بدهیم، باید قادر باشیم نوع توانایی دانش آموزان را بشناسیم. فقط در این صورت است که می‌توان رشد بیشتر کودکان را برنامه ریزی کرد. آگاهیمان از استعدد کودکان ما را به لزوم این امر متقاعد می‌کند که باید به کودکان در فرصت‌های بسیار اجازه داد تا با اشیا و مواد مختلف و متنوعی تجربه و کارکنند، احساسات خود را با زبان خودشان بیان نمایند، خودشان قضاوت کنند و از راه کشفیّاتی که می‌کنند فکر کنند و به راه حل‌های مسائل پی ببرند.

بيان مساله

از جمله مسایلی که همواره ذهن معلم و دانش آموزان و خانواده‌های آن‌ها را به خود مشغول داشته است این است که چرا بعضی از دانش آموزان به سادگی ریاضیات را یاد می‌گیرند و بعضی دیگر آن را به زحمت زیادی یاد می‌گیرند؟]1 [یا چرا یادگیری مفاهیم ریاضی در سال‌های آغازین تحصیل برای مسئولین؛ آموزگاران و والدین رضایت بخش است ولی در سال‌های بعد به صورت غیر منتظره برخی از دانش اموزان دچار افت تحصیلی می‌شوند؟ همجنین چرا بعضی افراد در جبر و محاسبات به خوبی عمل می‌کنند اما در هندسه ضعیف هستند یا بالعکس؟ و چرا بجه ها ی مدارس ایران در آزمون‌های بین المللی بسیار ضعیف عمل می‌کنند؟ هر معلم به فراخور دانش و تجربه خود راهکاری در این زمینه ارائه می‌کند شاید ساده‌ترین راهکاری که به این موضوع داده می‌شود تشکیل کلاسهای کمک آموزشی و استفاده از کتب کمک آموزشی مختلف باشد اما مطمئناً این راهکارنمی تواند تأثیر پایدار بر مخاطبان خود ایجاد کند زیرا در آموزش زیاضیات و فراگرفتن آن باید اصولی را مد نظر قرار داد]2[. همانگونه که می دانیم همه انسانها از دانش ریاضیات به گونه‌ای استفاده می‌کنند؛ چون ریاضیات یک شیوه تفکر است این درس علاوه بر کاربردهای متعدد یادگیری دارای اهداف و فوائد گسترده‌ای است که از جمله فوائد آن‌ها می‌توان مواردی را نام برد مانند بکار گیری روشهای استدلال و منطق عقلانی در حل مسائل روزمره و تأثیر کیفی آن بر آینده شغلی و تقویت قوه استدلال و ایجاد نظم فکری در ذهن دانش آموز و برخورد دار نمودن او از مهارت تفکر برتر رشد و پرورش مهارتهای حل مساله و شکل گیری مفاهیم ودرک نسبی از چگونگی و چرایی عمل الگوریتم و برانگیختن حس زیبایی شناختی انسان [3].
باتوجه به این کاربرد فراگیر؛ متاسفانه در نظام آموزشی مدارس ایران حیطه درس ریاضی در پایین‌ترین سطح آن (دانش) قرار دارد و اکثر دانش آموزان در درس ریاضی دچار افت تحصیلی می‌شوند بنابراین شایسته است که این دانش (چرتکه) از جانب مسئولین نظام آموزشی ومولفین کتب مورد توجه و عنایت بیشتری واقع شود این پژوهش استدلال می‌کند که چرتکه ریاضی باعث ایجاد روابط عددی در راه روشن ومنطقی برای بچه‌های کوچک همچنین ایجاد تصویر ذهنی خواهد کرد. بالا بردن قدرت حافظه و بهبود تمرکزیک کودک از جمله آموزش سرعت در کودکان برای پاسخ گویی به سؤالات وآموزش شنوایی نیز موجب می‌شود استفاده از چرتکه دقت و تمرکز دانش آموزان را افزایش می‌دهد انجام محاسبات را سرعت می‌بخشد و باعث نقش بستن محاسبات در ذهن می‌گردد انجام محاسبات را جذاب و انگیزه را افزایش می‌دهد. چرتکه کم حجم و به آسانی قابل حمل است وسیله‌ای یکپارچه است و امکان گم شدن یا ریختن اجزای آن وجود ندارد فرا گیر را در امر یاد گیری درگیر و فعال می‌کند [4].
ایجاد تنوع در شیوه‌های آموزش ریاضی و بکار گیری شیوه‌هایی که اثر بخشی بالایی در یاد گیری ریاضی داشته باشد همواره از دغدغه‌های معلمان بوده است یکی از این شیوه‌ها که اخیراً” مطرح شده و تصور می‌شود تأثیر زیادی بر یاد گیری داشته باشد آموزش چرتکه است استفاده از چرتکه برای دانش آموزان عادی و حتی برای آموزش دانش آموزان استثنایی و کودکان اختلالات یادگیری دارای اهمیت است چرتکه برای دانش آموزانی که دچار بیش فعالی هستند می‌تواند در افزایش دقت و تمرکز او سودمند باشد مفهوم چرتکه ما را با خود به زمانهای قدیم می‌برد ولی به دلیل مزایای فراوانی که دارد امروزه شاهد گسترش روز افزن محاسبه با چرتکه می‌باشیم چرتکه ابزاری قابل اعتماد برای محاسبات ریاضی است وسیله‌ای است که محاسبات را به شکل ملموس در دسترس قرار می‌دهد و مهارت بکار گیری انگشتان را افزایش می‌دهد [5. [چرتکه در آسان کردن مشکلات یاد گیری ریاضی دانش آموزان و تسهیل و تعمیق تدریس معلمان کمک می‌کند و این نکته را در اذهان ایجاد می‌کند که یاد گیری ریاضیات می‌تواند و باید به صورت معنی دار باشد و غفلت از آن؛ درس ریاضی را دچار ضعف فراوان می‌کند و متاسفانه این مساله نه تنها مقطع ابتدایی بلکه مقاطع دیگر آموزشی را در بر می‌گیرد لذا اهمیت چرتکه آنجا آشکارتر می‌شود که کسب آن از یکسو به یاد گیری ریاضی کودکان کمک می‌کند و از سوی دیگر باعث ارتقاء فکری دانش آموزان به عنوان شهروند آینده مؤثر می‌باشد. پایه اصلی این فعالیت زمانی ریخته می‌شود که دانش آموزان در سالهای اولیه مشغول به تحصیل هستند. آن‌ها باید از همان ابتدا یاد بگیرند که به آموخته‌ها و دروس خود به دیده متفکرانهبنگرند. لذا باید فرایند یاد دهی و یادگیری به گونه‌ای باشدکه دانش آموزان متفکربار آورده و در اندیشه یادگیری چرتکه برآیند این تکنیک شاید ساده باشد اماسالها نیاز به تمرین دارد که بتواند سرعت عمل داشته باشند چرتکه به عنوان یک ابزار برای توسعه مغز کودک است] 6. [پس آیا یادگیری با چرتکه بر یادگیری ریاضی دانش آموزان تأثیر دارد؟

فهرست مطالب

فصل اول: کلیات پژوهش 2
1-1-مقدمه: 3
1-2-بيان مساله: 3
1-3-اهميت و ضرورت انجام تحقيق: 5
1-4-اهداف تحقيق : 6
1-4-1- اهداف کلی : 6
1-4-2- اهداف ویژه: 6
1-5-فرضیه ها: 7
1-6-تعریف متغیرهای تحقیق: 7
1-6-1- تعاریف نظری: 7
1-6-2- تعریف عملیاتی : 7
فصل دوم: ادبیات و پیشینه پژوهش 8
مقدمه: 9
پیشینه ی نظری: 9
2-1- ریاضی چیست؟ 9
2-2-ضرورت واهمیّت آموزش ریاضی: 9
2-3- اهداف آموزش ریاضی از دیدگاه انجمن ملی معلّمان ریاضی: 10
2-4- اهداف کلی آموزش ریاضی در آموزش وپرورش ایران: 11
2-4-1- اهداف دانشی ریاضی در مقطع ابتدایی: 11
2-4-2- اهداف فرآیندی آموزش ریاضی: 12
2-4-3- اهداف مهارتی ریاضی در دوره عمومی: 14
2-5- هدف آموزش ریاضیّات از دیدگاه دانشمندان و نظریه پردازان بزرگ: 15
2-5-1 – جورج پولیا: 15
2-5-2 – افلاطون: 15
2-6- اصول رويكرد آموزشي برنامة درسي رياضي دورة ابتدايي: 15
2-7-نظریه های آموزش ویادگیری ریاضیّات : 16
2-7-1- جرومی برونر: 16
2-7-2 – زولتان دینس: 17
2-7-3- کاک کرافت: 18
2-8-قلمرو حوزه ریاضیّات از دید گاه برنامه درسی ملی: 19
2-9-مهارت های ریاضی در مقطع ابتدایی: 19
2-9-1- مهارتهای ذهنی و پردازشی: 19
2-9-2- مهارتهای عملکردی و اجرائی: 20
2-9-3- مهارتهای فرآیندی: 20
2-9-4- مهارتهای موقعیّتی: 20
2-10-شیوه های تدریس ریاضی: 20
2-10-1- روش تدريس زبان ماشيني (قاعده گويي): 21
2-10-2- روش تدريس زبان استدلالي: 22
2-10-3- روش هاي كلامي (زباني): 22
2-10-4- روش اكتشافي: 22
2-10-5- روش مفهومي: 23
2-10-6- روش فعال: 24
2-10-7- روش الگوريتمي: 24
2-11-یادگیری ریاضیّات در کودکان: 25
2-12- شیوه های جدید تدریس ریاضی: 26
2-13- شیوه های رایج تدریس ریاضی در ایران: 28
2-14- شیوه ی پیشنهادی تدریس ریاضی: 29
2-15- نحوه شکل گیری مفاهیم در ذهن کودکان: 30
2-16- نقش ارزیابی و ارزشیابی ریاضیّات: 31
2-17- اصول كاربردي مربوط به چگونگي يادگيري رياضيات در كودكان: 32
2-18- تفاوت تدریس و آموزش درس ریاضی در ایران با دیگر کشورها: 34
2-19- فعّالیت یاد دهی – یادگیری درس ریاضی در چند کشور: 35
2-20- موفقیّت و ورزیدگی در ریاضیّات : 36
2-21-ارتباط درس ریاضی با سایر علوم: 37
2-22- چرتکه چیست؟ 38
2-23- ساختار چرتکه: 38
2-24- تاریخچه چرتکه : 39
2-25- ابزارهای آموزش چرتکه: 39
2-25-1-چرتکه : 39
2-25-2-کتاب : 39
2-25-3 دفتر چه تمرین : 39
2-25-4- تکنیک شنیداری: 40
2-25-5- تکنیک تند نویسی : 40
2-25-6-فلش کارت : 40
2-26- فواید یادگیری چرتکه: 40
2-27- اجزای چرتکه: 41
2-28- آشنایی مختصربا چرتکه و نحوه کار با آن: 42
2- 29- مراحل آموزش چرتکه: 43
2-30- ارتباط چرتکه و قدرت تخیل : 44
2- 31- ارتباط چرتکه با توسعه عملکرد نیمکره های مغز : 44
2-32- راهکار های پرورش مغز و تاثیر آن بر یادگیری: 45
2-32-1-توجه به خواب و خوراک: 46
2-32-2-کار کشیدن از مغز: 46
2-33- نقش حر کت دست ها در یادگیری: 47
2-34- یاد گیری علم ریاضی و عمل پردازش مغز: 48
2-35- آموزش چرتکه و پرورش تفکر در کودکان: 49
2-35-1- تفکر چیست ؟ 49
2-35-2- روشهای تفکر: 50
2-35-3- موضوع تفکّر ریاضی: 50
2-35-4- تاثیر تفکر ریاضی در بالا بردن سطح یادگیری دانش آموزان: 51
2-36- آموزش چرتکه وتقویت مهارت استدلال: 51
2-37- نقش آموزگار در رشد استدلال و برهان رياضی در دانشآموز: 53
2-38- آموزش چر تکه ومهارت حل مسأله: 54
2-39- حل مسئله در دوره دبستان به چه صورت است؟ 55
2-40- نقش آموزگار در تو سعه حل مسئله: 55
2-41- دیدگاه کلی در آموزش ریاضی برای حل مسأله: 56
2-42- راهبردهای مهارت ذهنی ریاضی: 57
2-42- 1- شفاهی: 57
2-42- 2-دیداری: 57
2-42- 3-نمادین: 58
2-42- 4- فیزیکی: 58
2-42- 5-میان فردی: 58
2-43- راهبردهایی برای پیشرفت مهارت ذهنی ریاضی کودکان (نمونه عملی) 58
2-44-عوامل پرورش دهنده محاسبات ذهنی: 61
2-44-1- معلّم: 61
2-44-2- یادگیرنده: 62
2-44-3- محیط: 63
2-44-4- برنامه درسی: 63
2-45- رازهای آموزش حساب ذهنی و چرتکه ای با تمرین های شنیداری: 63
2-46- کاربرد آموزش چرتکه برای دانش آموزان کم توان ذهنی : 64
2-47- کاربرد آموزش چرتکه برای دانش آموزان دچار آسیب شنوایی: 64
2-48- پیشنهادات برای بهبود و تقویت درس ریاضی: 64
2-49- پیشینه پژوهشی: 65
2-49-1- تحقیقات انجام شده در داخل کشور: 65
2-49-2- تحقیقات انجام شده در خارج کشور: 66
فصل سوم: روش پژوهش 68
مقدمه: 69
3-1- روش تحقیق: 69
3-2- جامعه آماری، نمونه وروش نمونه گیری: 69
3-3- روش اجراي پژوهش: 70
3-4ـ ابزارگردآوریاطلاعات: 70
3-5- روش تجزیه تحلیل آماری 71
3-5-1- آمارتوصیفی: 71
3-5-2- آماراستنباطی: 71
فصل چهارم: یافته های پژوهش 72
مقدمه: 73
4-1- یافته های توصیفی 73
4-2- یافته های استنباطی 74
4-2-1-نمودار پراکنش توزیع نرمال داده ها در پیش آزمون گروه آزمایش 75
4-2-2-نمودار پراکنش توزیع نرمال داده ها در پیش آزمون گروه کنترل 76
4-2-3-نمودار پراکنش توزیع نرمال داده ها در پس آزمون گروه آزمایش 77
4-2-4-نمودار پراکنش توزیع نرمال داده ها در پس آزمون گروه کنترل 78
4-2-5-نمودارهای آزمون خطّی بودن گروه ها در آزمونهای محقق ساخته 79
4-2-1- یافته های مربوط به فرضیّات پژوهش 81
فصل پنجم: بحث و نتیجه گیری 86
مقدمه: 87
5- 1- بحث درباره‌ی یافتهها 87
5-2- جمع بندی 94
5-3- محدودیّت های پژوهش 95
5-4- پیشنهادهای کاربردی 95
5-5-پیشنهادات پژوهشی 96
فهرست منابع و مآخذ: 97

فهرست جدول ها

جدول 3-1: دیاگرام طرح کلی پژوهش 69
جدول 4-1- میانگین و انحراف معیارآزمون محقق ساخته (دقت و تمرکز حواس) در ریاضی، سرعت عمل و محاسبات ذهنی و نمرات درس ریاضی در پیش‌آزمون و پس‌آزمون 73
جدول 4-2- بررسی فرض همگنی شیب رگرسیون 80
جدول 4-3- آزمون برابری واریانسها 81
جدول 4-4- نتایج تحلیل کواریانس آزمون محقق ساخته دقت و تمرکز حواس در ریاضی بین آزمودنی‌ها 81
جدول 4-5- میانگین تعدیل شده و تعدیل نشده‌ی نمرات پس‌آزمون آزمون محقق ساخته (دقت و تمرکز حواس) در ریاضی در گروه‌ها 82
جدول 4-6- نتایج تحلیل کواریانس سرعت عمل و محاسبات ذهنی بین آزمودنی‌ها 83
جدول 4-7- میانگین تعدیل شده و تعدیل نشده‌ی نمرات پس‌آزمون سرعت عمل و محاسبات ذهنی در گروه‌ها 83
جدول 4-8- نتایج تحلیل کواریانس پیشرفت ریاضی بین آزمودنی‌ها 84
جدول 4-9- میانگین تعدیل شده و تعدیل نشده‌ی نمرات پس‌آزمون پیشرفت ریاضی در گروه‌ها 85

فهرست نمودار ها

نمودار 4-1- توزیع نرمال پیش آزمون محقق ساخته (دقت و تمرکز حواس) در ریاضی 75
نمودار 4-2- توزیع نرمال پیش آزمون سرعت عمل و محاسبات ذهنی 75
نمودار 4-3- توزیع نرمال نوبت اول درس ریاضی 75
نمودار 4-4- توزیع نرمال پیش آزمون محقق ساخته (دقت و تمرکز حواس) در ریاضی 76
نمودار 4-5- توزیع نرمال پیش آزمون سرعت عمل و محاسبات ذهنی 76
نمودار 4-6- توزیع نرمال نوبت اول دزس ریاضی 76
نمودار 4-7- توزیع نرمال پس آزمون محقق ساخته (دقت و تمرکز حواس) در ریاضی 77
نمودار 4-8- توزیع نرمال پس آزمون سرعت عمل و محاسبات ذهنی 77
نمودار 4-9- توزیع نرمال نوبت دوم درس ریاضی 77
نمودار 4-10- توزیع نرمال پس آزمون محقق ساخته (دقت و تمرکز حواس) در ریاضی 78
نمودار 4-11- توزیع نرمال پس آزمون سرعت عمل و محاسبات ذهنی 78
نمودار 4-12- توزیع نرمال نوبت دوم درس ریاضی 78
نمودار 4-13- پراکنش بررسی فرض رابطه خطّی بین گروه‌ها در آزمون محقق ساخته (دقت و تمرکز حواس) در ریاضی 79
نمودار 4-14- پراکنش بررسی فرض رابطه خطّی بین گروه‌ها در سرعت عمل و محاسبات ذهنی 79
نمودار 4-15- پراکنش بررسی فرض رابطه خطّی بین گروه‌ها در نمرات درس ریاضی 79

 

فهرست منابع و مآخذ:

[1] ریس و همکاران، کمک به کودکان در یادگیری ریاضیات، ترجمه نوروزیان، مسعود،1391، تهران، انتشارات مدرسه،2003، صفحات،164-143
[2] تبریزی، مصطفی، درمان اختلالات ریاضی، تهران، اتتشارات فروزان،1390، صفحات 65 -54

[3]Herbert PThe Development of Informal and Formal Mathematica Thinkin 2013,5,9-15.

[4] اسکمپ، ریچارد، فهم رابطه‌ای و فهم ابزاری، ترجمه رضا حیدری و زهرا گویا، در مجله رشد،2009، صفحات، 96-78.
[5] استیگلر، جیمز، چرتکه روانی و اثر آموزش چرتکه بر روی محاسبات ذهنی. دانشگاه شیکاگو،2014، صفحات، 254- 231.

[6]Judith, L., Laure,n, A. Murphy, and Karen, C. Fuson. Advancing Children’s Mathematical Thinking in Everyday Mathematics Classrooms.Journal for Research in Mathematics Education30 1999(2)148-17.

[7] دیبایی، محمد تقی، پایه ریاضیات ابتدایی و راهنمایی. تهران: انتشارات سروش 1380 ص 256.
پژوهشگاه مطالعات وزارت آموزش وپرورش، گزارش سالیانه، لینک خبر 1391: ص 45 [8]
[9] مارتین، جی. آل، ریاضیات برای معلمان. ترجمه شهرناز بخشعلی زاده، تهران: انتشارات مدرسه 2008 صفحات 240-129
[10] پولیا، جورج، خلاقیت ریاضی. ترجمه پرویز شهریاری، تهران: انتشارات فاطمی، چاپ ششم 1962 صفحات 263-240
[11] مسعودی پور، حمید، چرتکه، تهران انتشارات رشد، اندیشه خوارزمی،2014، صفحات 96-87.

[12]Clausen-May, T، Teaching maths to pupils with different learning styles. London: Paul Chapman2005.

[13] محبی، حمید رضا، «رابطه بین سواد والدین و عملکرد دانش آموزان ابتدایی کرج» پایان نامه کارشناسی ارشد، دانشگاه تربیت معلم،1392، صفحات 78-52.
[14] عمید، حسن، فرهنگ لغت، تهران، انتشارات سپهر،1384 ص 45
[15] هاشمیان نژاد، فریده، پرورش تفکر انتقادی از طریق برنامه درسی دوره ابتدایی. مجموعه مقالات ارائه شده در همایش برنامه درسی و پرورش تفکر. (انجمن برنامه درسی ایران). گرد آورنده حسن ملکی،1383. ص 58
[16] یاسی پور، غلامرضا، استدلال. رشد برهان ریاضی، دوره 28 شماره 2، وزارت آموزش و پرورش، سازمان برنامه ریزی آموزشی، دفتر انتشارات تکنولوژی آموزشی 1391 صفحات 320-298

[17]Burek’D،”Empowering students by promoting active learning in London’now York’’143،2003.

[18] رفیع پور، ابوالفضل، چرا عملکرد دانش آموزان ایرانی درتیمز ضعیف بود؟ مجله رشد آموزش 1389 ریاضی شماره 76. دفترانتشارات کمک آموزشی، سازمان پژوهش برنامه ریزی آموزشی، وزارت آموزش وپرورش ص 251
[19] هاوسون، وب ویلسون،1986، ریاضیات مدرسه در دهه، ترجمه ناهید ملكی، تهران: نشرمرکز 1986 ص 345
[20] برنامه درسی ملی، سال اول. سازمان پژوهش و برنامه ریزی آموزش وزارت آموزش و پرورش 1389.
[21] علم الهدایی، سید حسن، اضطراب ریاضی، فصلنامه روانشناسی و علوم تربیتی دانشگاه تهران. شماره 60،1389، صفحات،87-52
[22] گویا، زهرا، مقاله آموزش ریاضی چیست؟ مجله رشد ریاضی شماره 47 دفتر انتشارات کمک آموزشی وزارت آموزش و پرورش 1385 صفحات 142-125

[23]Jarvis’p، International dictionary of adult and continuing education’183،2002.

[24] صفوی، امان ا…، روش‌ها، فنون و الگوهای تدریس، انتشارات سمت. تهران 1382 صفحات 140-135.
[25] مجموعه مقالات آموزش ریاضیات ایران، وزارت آموزش و پرورش، سازمان آموزش و پرورش چهار محال بختیاری. شهرکرد: انتشارات سروش 1386 ص 25

[26]Hillar’Y،Reflective teaching in further and adult education ‘ continuum’London’ new york’ 143،2003
[27]Stephen J، Developing Mathematical Thinking and Self-Regulated Learning: A Teaching Experiment in a Seventh-Grade Mathematics Classroom Author Yetkin Source: Educational Studies in Mathematics, 53(3)،2003، 179-202.

[28] فیشر، رابرت، آموزش تفکر به کودکان، ترجمه مسعود رسام وافسانه نجاریان، تهران: نشر رسش 2010، صفحات 314-248

[29]JINFA CAI and PATRICIA ANN KENNEY2000) Fostering Mathematical Thinking through Multiple SolutionsAuthor(s): Mathematics Teaching in the Middle School, 5(8)،2000.534-539

[30] نجفی خواه مهدی، يافتيان نرگس، بخشعلی زاده شهرناز، دورنمايی از خلاقيت در فرآيند آموزش رياضی. نشریه علمی – پژوهشی فناوری آموزش; 5 (4)،1390 صفحات 25-26
[31] شعبانی، حسن،1389، مهارت‌های آموزشی و پرورشی (روش‌ها وفنون تدریس). انتشارات سمت تهران،1389 صفحات 87-56
[32] عباسی، محمد رضا، روش حل مسأله، مجله رشد تکنولوژی آموزشی، شماره 5، دفتر انتشارات کمک آموزشی، سازمان پژوهش و برنامه ریزی، وزارت آموزش و پرورش 1379، صفحات 49-34.
[33] رفیع پور، ابوالفضل، چرا عملکرد دانش آموزان ایرانی درتیمز ضعیف بود؟ مجله رشد آموزش ریاضی شماره 76. دفترانتشارات کمک آموزشی، سازمان پژوهش برنامه ریزی آموزشی، وزارت آموزش وپرورش 1389، صفحات،156 -124

[34]Burton, L، Mathematical thinking: The struggle for meaning. Journal for Research in Mathematics Education 1984, 12,45-52.
[35]Davis.Robert B،“How Many Ways can Understand?” Arithmctic 1998Teacher’56(9).

[36] سلسبیلی، نادر، همایش علمی – پژوهشی آموزش ریاضی و علوم با تاکید بر یافته‌های سومین مطالعه بین المللی ریاضیات و علوم (تیمز)، مجله رشد آموزش ریاضی، شماره 57. سال پانزدهم، دفتر انتشارات کمک آموزشی، سازمان پژوهش و برنامه ریزی، وزارت آموزش و پرورش 1378-1379 صفحات 57 -49
[37] دلاور، علی، احتمالات وآمار کاربردی در روانشناسی و علوم تربیتی. تهران: انتشارات رشد 1390 صفحات 253-125.

[38]Carpenter, T. P., Fennema, M.L. and Franke, M.L، Cognitively guided instruction: A knowledge base for reform in primary mathematics instruction. The Elementary School Journal,1996، 97(1): 3–20.
[39]Touger’Hallie Ephron،”Models:Help or Hindrance?”Arihmeetic 2000Teacher’34(36-37)
[40]Lisa J، Developing Mathematical Thinking Using Codes and CiphersAuthor(sEvered and SerigneGningueSource: Teaching Children Mathematics, 2001،8 (1). 8-15.
[41]Johnson.Elaine b،Contextual teaching and learning،2012

[42] ملکی، حسن،1389، برنامه درسی و پرورش تفکر. انتشارات انجمن اولیا و مربیان. تهران، 1389 صفحات 145-126
یپ. بان. هار، طرح مساله ریاضی در مدارس ابتدایی سنگاپور، رشد آموزش ریاضی، 1391، شماره 2 ص 42 [43]

[44]Jones.R.، Foundation of critical thinking. Harcourt college publisher،2001
[45]Japan Society of Mathematical Education Research Section (Ed.).،2000, August):School mathematics in Japan. Resources of the national presentation at the 9th International Congress on Mathematical Education, Makuhari, Japan

[46] پاتریک، جرمی، کیل؛ سوافورد، جین، کمک کنیم کودکان ریاضی یاد بگیرند. ترجمه مهدی بهزادو زهرا گویا،1387، تهران: انتشارات فاطمی 2005، صفحات 86-65

[47]Amaiwa, SH، The ripple effect and the future propects of abacus learning.
Retrieved from: www.Google.Com، 2001.
[48]Hatano, G,. Amaiwa, SH., Shimizu, K، Formation of a mental abacus for
computation and its use as a memory device for digits: a developmental study.
Developmental psychology, vol. 23, NO, 6,1987، 832-838.
[49]Krampner, J، Ancient abacus: Elegent, accurate, fun to operate. Published in:Dollarsense1993, pp 10-11.
[50]Vasuki, K، The impact of Abacus learning of mental arithmetic on cognitive
abilities of children. For the degree of Doctor of philosophy.Retrieved from: www.Google.Com،2013
[51]Siang, K. T،The modality factor in two approaches of Abacus- based calculation and its effect on mental arithmetic and school mathematics achievements. For the degree of doctor of philosophy. Retrieved from: www.Google.Com،2007.
[52]Vasuki, K، The impact of Abacus learning of mental arithmetic on cognitive
abilities of children. For the degree of Doctor of philosophy.Retrieved from: www. Google.Com2013.
[53]Lean, C. B., &Lan, O. S، Comparing mathematical problem solving ability of pupils who learn Abacus mental arithmetic and pupils who do not learn Abacus mental arithmetic.Retrieved from: www.Google.Com،2004

[54] شعاری نژاد، علی اکبر، روان شناسی رشد. انتشارات اطلاعات. تهران،1374 صفحات 721-689
[55] جفریز، مایک وهانکوک، ترور، راهنمای مهارت‌های تفکر. ترجمه محمود تلخابی و یلدا دلگشایی. انتشارات جهاد دانشگاهی. تهران، 1389 ص 89
[56] تقی پور ظهیر، علی، اصول و مبانی آموزش و پرورش. تهران: انتشارات دانشگاه پیام نور،1389 صفحات 254-238

[57]Bright’W،”Elementary Preservice Teachers’ Changing Beliefs and Instructional Use of Children’s Mathematical Thinking”. Journal for Research in Mathematics Education،1999’30(89-110)
[58]Victoria R. Jacobs and Randolph A، Mathematical Thinking: Helping Prospective and Practicing Teachers FocusAuthor(s)’ PhilippSource: Teaching Children Mathematics,2004. 11(4) 194-201
[59]Talia Ben-Zeev and Jon R، Star Source Spurious Correlations in Mathematical Thinking Author. Cognition and Instruction2001،, 19(3) 253-275.
[60]Alice Hansen.، Using Resourcesto Support MathematicalThinkig. London: Continuum،2007،248-256
[61]Watson; J،2006، Supporting Mathematical Thinking by(Ray HuntleyMathematics in School), 35(2). 35-36
[62]Terry Wood, Gaye Williams and Betsy،2006، Children’s Mathematical Thinking in Different Classroom. Journal for Research in Mathematics Education،2006, 37(3)222-255
[63]Richard Barwell، Researchers’ Descriptions and the Construction of Mathematical ThinkingAuthor. Educational Studies in Mathematics,2009، 72(2), 255-269.
[64]Schonfeld,A،Mathematical thinking and problem soling،1994،,221-229.
[65]Elizabeth Fennema, Thomas P. Carpenter, Victoria R. Jacobs, Megan L. Franke and Linda W، Educational Researcher،1998, 27. (5), 6-11
[66]Sternberg, R. J., and Horvath, J. A، A prototype view of expert teaching. Educational Researcher،1995,24, 9-17.
[67]Myung-Ja Song and Herbert P،Seeking Structure in Mathematical Thinking The Nature of Mathematical Thinking. 58(5),1987، 1286-1296
[68]OERS, B.V،، Teachers’ Epistemology and the Monitoring of Mathematical Thinking in Early Years Classrooms.European Early Childhood Education Research Journal, 10(2), 2002،19-30.
[69]Smith, F., Hardman, F. and Higgins, S، The impact of interactive whiteboards on teacher–pupil interaction in the National Literacy and Numeracy Strategies. British،2006
[70]Askew, M., Brown, M., Johnson, D., Rhodes, V. and Wiliam, D،Effective teachers of numeracy: Summary of findings. London: King’s College,1997، pp2–3.
[71]Kami،consance.Arithmetic:childrens Thinking or Their Writing of correct Answers. Arithmetic Teacher,1987،35,2-3.

[72] شهریاری، پرویز،1380، چگونه مسائل ریاضی را حل کنیم؟ تهران، نشر مهاجر,1380، صفحات 146-124
[73] علیزاده. پریسا، «تأثیر آموزش چرتکه بر عملکرد ریاضی» شهرستان اهواز، پایان نامه کارشناشی ارشددانشگاه علوم ریاضی اهواز،1393، صفحات 23-15.
[74]رضایی، مانی، مقاله نقش ریاضیات در مجله رشد آموزش ریاضی،1391، دوره 29، شماره 3، ص 52
[75] زنگنه، احمد، میز گرد اثبات، مجله رشد آموزش ریاضی، شماره 83.,1385 ص 47
[76] حبیبی پور، مجید،. اهمیت تفکر انتقادی در آموزش و پرورش. رشد تکنولوژی آموزشی. شماره،178،1385، صفحات 58-45

[77]Wood, T., William, G., &M c Neal, B.Children’s Mathematical Thinking in Different Classroom Cultures. Journal of Research in Mathematics Education,37(3),2010، 222-255.
[78]Alan H. Catherine M،1996،Mathematical Thinking and Problem Solving MillerThe Mathematics Teacher,1996، 89(1) 74

 

 

بلافاصله پس از خرید، می توانید فایل را دانلود نمایید

 

خرید
  راهنمای خرید:
  • لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.